ALGAL INDICATORS OF ECOSYSTEM RESPONSE IN THE DECOMP PHYSICAL MODEL HIGH-FLOW EXPERIMENT

Barry H. Rosen¹, Sue Newman², Colin Saunders², Joel Trexler³, Judson Harvey⁴, Carlos Coronado-Molina², and Eric Tate-Bolt²

¹United States Geological Survey, Orlando, FL, USA ²South Florida Water Management District, West Palm Beach, FL, USA ³Florida International University, North Miami, FL USA ⁴United States Geological Survey, Reston, VA USA

The Decomp Physical Model (DPM)

Samples of periphyton collected throughout the pocket: sediment traps, artificial substrates and natural collections

Enlarged view of the DECOMP Physical Model footprint indicating the locations of the walkways and monitoring stations. C = control; RS = ridge/slough, S = slough UB = upstream backfill

Science for a changing world

Depiction of the primary producers (algae and cyanobacteria)

- Daily, weekly, monthly, seasonal forcing functions (temp., light quantity and quality, rainfall)
- Each organism has an optimum **rate** of nutrient uptake; and optima for all other factors
- Each organism has a **concentration** threshold efficiency to take up that nutrient

Variety of organisms, some common, some rare (why?) (how are some "holding on"?) At any given time, they experience approximately the same nutrient environment (although microhabitats exist)

- Slow-growing nutrient specialist
- Fast-growing nutrient opportunist

Periphytometers downstream of culverts

Growth on periphytometers downstream of culverts

Diatoms response

000

after

H_o: There is a more subtle shift in the periphyton community structure

> **Findings** : a) more of an individual species and, b) more species overall

1

D

before

Add flow increase... potential dramatic shift (these are periphyton, so they stay in place, for the most part)

after

H_o: There is a dramatic shift in the periphyton community structure

> Findings : nearest to inflow site, a big increase in filamentous greens

before

Not just one type of filamentous green is responsive

Diatoms and cyanobacteria at E-500 and E-800

E-500 and E-800

Cyanobacteria: Dominance of calcium carbonate (marl) producers downstream

E-500 and E-800

Factors: sheath/bacteria available Ca high pH low phosphorus

Secondary Response: cellular level, (what does flow do)?

boundary layer

rare

•

- nutrients are pulled from the surrounds
- diffusion across the boundary layer
- enzymatic flexibility of the organism (to some extent

eroded boundary layer

Life at ultra low nutrients: greens

Add flow, quiescent filamentous greens proliferate *Mougeotia* and Zygnema

20 ur

Add flow, quiescent filamentous greens proliferate Spirogyra

Species Richness: Greens as a proportion of total species richness

Species Richness: Cyanobacteria as a proportion of total species richness

Other Indicators of flow: plankton

